Cancer-Targeted Diapertics
Radioiodinated Phospholipid Ether Analogs for Broad-Spectrum Imaging and Therapy

EMIT: Targeted Radiotherapy Conference
Washington, DC January 31, 2013
Cancer-Targeted Approaches: Desirable Features

- **Selective** for cancer vs. normal cells/tissues
- **Broad-spectrum targeting** across/within cancer types
- Targets cancer stem cells and mature cancer cells
- **Targeting vehicle** can deliver a range of effectors (radioisotopes, chemo agents, imaging agents)
- **Broad-spectrum efficacy** across/within cancer types

- **Cancer-targeting examples**
 - **Active targeting**
 - mAbs/fragments; peptides, derivitized nanoparticles
 - **Passive targeting**
 - enhanced vascular permeability (“EPR-effect”)
 - nanoparticles, liposomes
Cancer-Targeted, Broad-Spectrum, Multi-Product Technology Platform

Cancer-Targeting Mechanism
- Lipid Raft
 - Cell Membrane
 - [portal of entry]
- Phospholipid Catabolism
 - [retention]

PET Imaging
- 124I PLE

Therapy
- 131I PLE

Intraoperative Margin Illumination & Non-Invasive Imaging
- nIR PLE

Cancer-targeted Radiopharmaceuticals

% Survival

Phase 1-2

Phase 1b

Pre-IND

Normal Cell

Cancer Cells
- Stem
- Mature

Normal Cell

Cancer Cells

Stem

Mature
Cancer-Targeting Technology Platform

- Proprietary PLE chemical scaffold derived from substantial exploration of cancer-targeting SAR (Pinchuk, et al. 2006, J Med Chem, 49:2155)
- Aryl iodine bond very stable (free iodine not released)
- Selective uptake and prolonged retention in cancer cells
 - Bulk tolerance in R position

124I-CLR1404 - PET
131I-CLR1404 - Radiation therapy
127I-CLR1404 - Chemotherapy
CLR1501 Optical, visible
CLR1502 Optical, near-infrared
PLEs Selectively Target Cancer Cells

- PLEs accumulate in cancer vs. normal cells
 (24 hr incubation)

* Fluorescent signal normalized to normal fibroblast (=1.0)
Lipid Rafts

- Lipid rafts are specialized microdomains of plasma membrane that are enriched in cholesterol and glycosphingolipids.

- Lipid rafts serve as molecular platforms that spatially organize molecules for specific signaling pathways including those involved in regulation of apoptosis and cell proliferation (e.g. growth factor receptors, Akt, TNF receptors).
Lipid Rafts are Over-Expressed in Cancer Cells

- PLE uptake into cancer cells is, at least in part, dependent upon intact plasma membrane lipid rafts

![Image of Co-Culture, Normal Hu Fibroblast, Hu NSCLC cell, Prostate, Pancreatic, Kidney, NSCLC, Intact Rafts, Disrupted Rafts (Me-β-cyclodextrin pretreatment), Green = CLR1501].

(red = fluorescent-labeled cholera toxin subunit B)
Reduced PLE Catabolism in Neoplastic Cells/Tissues May Contribute to Retention

<table>
<thead>
<tr>
<th>Tissue</th>
<th>PLE Catabolic Activity a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat Liver (normal)</td>
<td>7.3</td>
</tr>
<tr>
<td>Rat Morris Hepatoma 7794A</td>
<td>5.8</td>
</tr>
<tr>
<td>Rat Morris Hepatoma 7777</td>
<td>1.4</td>
</tr>
<tr>
<td>Mouse Sarcoma 180</td>
<td>0.42</td>
</tr>
<tr>
<td>Mouse Melanoma B-16</td>
<td>0.31</td>
</tr>
<tr>
<td>Mouse Ehrlich Ascites Carcinoma</td>
<td>0.14</td>
</tr>
<tr>
<td>Mouse KHZ Mam Tumor</td>
<td>0.11</td>
</tr>
<tr>
<td>Rat Walker-256</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell/Tissue</th>
<th>PLD b Protein c</th>
<th>PLD mRNA d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat Liver (normal)</td>
<td>14.1</td>
<td>12.2</td>
</tr>
<tr>
<td>Mouse CT26 colorectal</td>
<td>7.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Mouse hepa-1 hepatoma</td>
<td>3.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Mouse TS/A breast</td>
<td>2.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>

b PLD = phospholipase D

a Expressed as µmol of PLE cleaved/20 min/mg protein
PLEs Selectively Target a Wide Range of Malignant Tumors *In Vivo*

<table>
<thead>
<tr>
<th>Human cancer xenografts</th>
<th>Rodent malignant tumors</th>
<th>Mouse benign tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>Breast</td>
<td>Intestinal polyp</td>
</tr>
<tr>
<td>Non-small cell lung</td>
<td>Prostate *</td>
<td>Mammary alveolar hyperplasia</td>
</tr>
<tr>
<td>Adrenal</td>
<td>Colon</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>Glioma</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>Retinoblastoma</td>
<td></td>
</tr>
<tr>
<td>Ovarian</td>
<td>Colon</td>
<td></td>
</tr>
<tr>
<td>Pancreatic</td>
<td>Intestinal *</td>
<td></td>
</tr>
<tr>
<td>Renal Cell</td>
<td>Melanoma</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>Mammary *</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>Hepatocellular Carcinoma *</td>
<td></td>
</tr>
<tr>
<td>(triple-negative)</td>
<td>Hepatic</td>
<td></td>
</tr>
</tbody>
</table>

Includes transgenic tumor models
Representative nuclear and/or microPET/CT or MRI hybrid images demonstrating excellent primary and metastatic tumor conspicuity. Images were acquired from 24-96h post-i.v. injection (80-140 µCi of 124I-CLR1404) in a variety of human subcutaneous or orthotopic xenograft, spontaneously induced, or transgenic in vivo tumor models.
CLR1404 Tumor Uptake/Retention In Vivo

^{124}I-CLR1404 - PC 3 hu prostate xenograft (μPET scans)

Tumor uptake evident at about 9h

^{125}I-CLR1404 - 251 hu adrenal xenograft

Head

Fiducial markers

Movies
Unlike FDG, CLR1404 Does Not Accumulate at Sites of Inflammation

PC3 human prostate xenograft

\(I = \text{carrageenan induced inflammatory lesion, } H = \text{heart, } T = \text{tumors} \)
3D Hybrid microPET/CT image of an anesthetized orthotopic BxPC3 pancreatic tumor-bearing Nude mouse 48h post iv administration of 124I-CLR1404. The presence of the primary pancreatic tumor (P) as well as a spontaneous liver metastasis (M) is evident on the 3D scan. The presence of both tumors was verified at necropsy.
PLEs Target Cancer Stem Cells

Growing database implicates cancer stem cells in:
- Tumor growth, metastasis
- Resistance to chemotherapy, radiotherapy
- Cancer relapse

*fluorescent signal normalized to normal human astrocyte (=1.0); Green = CLR1501

(red = lipid rafts; fluorescent-labeled cholera toxin subunit B)
131I-CLR1404 is Highly Efficacious in Mouse Xenograft Models

A single dose* of 131I-CLR1404 (100 uCi, i.v., n=6 BLUE) was administered after tumors became established (~200 mm³ = Day 0). Control = 127I-CLR140 (0.19 mg/kg; n=6 RED)

(*Two doses, one week apart for glioma model)
The Diaputic Cancer Treatment Paradigm

- A major goal of oncology today is to predict which patients will respond to a molecularly targeted drug
 - This is done by using biomarkers or imaging surrogates which are selective for the pathway or target of interest
 - Limitations of imperfect surrogates

- The PLE-based diaputic treatment paradigm offers advantages over existing approaches
 - Chemically identical biomarker (^{124}I-) and therapeutic (^{131}I-) molecules (CLR1404) which are administered in ~equal mass doses
 - PET/CT allows full-body, quantitative, 4-D mapping of biodistribution, and localization of primary tumors/metastases for diagnosis and disease staging
 - PET/CT based dosimetry may predict personalized therapy dose
 - Or no treatment if imaging shows suboptimal tumor or normal organ uptake
124/ 131I- CLR1404 Diapetetic Paradigm

- PET/CT time course of an LS180 colon CA xenograft-bearing mouse injected i.v. with a single injection of a mixture of 124,131I-CLR1404 (200 µCi each). Tumor shrinkage confirmed by CT. Weight loss seen near the end of the study.

* time post-injection

Movie
CLR1404 Platform - Clinical Studies

- **124I-CLR1404 PET imaging agent**
 - Ongoing Phase 1-2 trials in multiple tumor types
 - NSCLC, brain (primary and metastases), triple negative breast, soft tissue sarcoma, colorectal, gastric, esophageal, prostate, ovarian, pancreatic, and head & neck cancers

- **131I-CLR1404 molecular radiotherapeutic agent**
 - Phase 1a dosimetry trial successfully completed
 - Phase 1b escalating dose, MTD-seeking, multi-site trial is ongoing
 - NSCLC, triple negative breast, soft tissue sarcoma, colorectal, gastric, esophageal, prostate and ovarian cancers
Three previously unknown brain mets were discovered, altering treatment plan.

Selective tumor uptake against very low background in normal brain tissue.

Imaged 6 days following a 5 mCi dose; confirmed with MRI.
124I-CLR1404 PET - Recurrent Glioblastoma

- **124I-CLR1404 PET image shows** tumor to brain ratio of 30:1 (3-5 typically considered adequate in PET imaging)

JNM Cover Image

18F-DOPA PET

124I-CLR1404 PET

48h post-5mCi dose
124I-CLR1404 PET - Glioblastoma

- **124I-CLR1404 PET and MRI tumor images are only partially overlapping**
- This could reflect more accurate imaging of living, malignant tissue by 124I-CLR1404 PET compared to MRI (note: histopathology not performed on resected tumor)

<table>
<thead>
<tr>
<th>124I-CLR1404 PET (48h post-5mCi dose)</th>
<th>MRI</th>
<th>Possible Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>+</td>
<td>Necrotic tissue?</td>
</tr>
<tr>
<td>+</td>
<td>–</td>
<td>Malignant tissue?</td>
</tr>
</tbody>
</table>

Areas of non-overlap shown in colors

Fused PET/MRI Images
124I-CLR1404 PET - No Uptake in Glioma Scar Tissue

- 124I-CLR1404 PET has the potential to differentiate growing tumor from pseudoprogression, enabling more timely and certain diagnosis.

Prior radiation therapy scarring

No 124I-CLR1404 uptake

MRI

124I-CLR1404 PET
(day 2 post-dose, 5 mCi)
131I-CLR1404 PET - Targets Tumors in Man

- SPECT/CT images from Phase 1a dosimetry study (10 mCi, Day 6)
- Demonstrated uptake and prolonged retention of 131I-CLR1404 in cancerous tumors but not normal tissues
131I-CLR1404 PET - Targets Tumors in Man

- SPECT/CT images from Phase 1b MTD study (27 mCi, Day 21)
- Demonstrated uptake and prolonged retention of 131I-CLR1404 in cancerous tumors but not normal tissues
CLR1502 - Intraoperative Tumor Margin Illumination and Non-Invasive Tumor Imaging

Fluobeam™ (near-IR)

Intraoperative Tumor Margin Illumination in Real Time

No residual tumor

HCT116 human colon tumor xenograft; 4 days post-CLR1502 injection
Summary

- Overabundant lipid rafts and deficits in PLE catabolism are believed to be involved in selective targeting of both differentiated cancer cells and cancer stem cells by PLEs.
- As a consequence, PLE targeting of primary and metastatic tumors is broad-spectrum across a wide range of tumor types.
- 124I-CLR1404 may have distinct advantages over 18F-FDG as a PET agent.
- Selective and prolonged accumulation in human cancer has been routinely observed in imaging with 131I-CLR1404 and 124I-CLR1404 in initial clinical studies.
- Significant therapeutic efficacy has been seen with 131I-CLR1404 in a wide range of xenograft models (tumor growth suppression and increased survival).
- Diapeutic pairing of 124I-CLR1404 and 131I-CLR1404 may offer a truly individualized approach to cancer diagnosis, staging, therapy and efficacy assessment.
- Optical imaging PLEs show early promise for intraoperative tumor margin illumination and diagnosis.
Thank you!

Novelos Colleagues
Jamey Weichert
Chris Blakley
Maria Dawson
Andrea Flaherty
Patrick Genn
Joe Grudzinski
Kim Hawkins
Jill Irwin
Angki Kandella
Jason Larrabee
Marc Longino
Harry Palmin
Anatoly Pinchuk
Joanne Protano
Dennis Tate
Abe Vaccaro
Brad Wallom

UW Students and Faculty
Fred Lee
Perry Pickhart
Sharon Weber
Anne Traynor
Rock Mackie
John Kuo
Paul Clark
John Floberg
Mohammed Farhoud
Ben Durkee
Rich Halberg
Bill Dove

Univ Wisconsin
Carbone Cancer Center
Radiology
Medical Physics
Human Oncology
WARF
Clinical Trial Group

National Cancer Institute
UWCCC Grant
2 R21 Grant (breast and lung)
1 RO1 Grant (glioma, brain mets)

Clinical Trial Sites
COH-Mortimer
Duke
Johns Hopkins
Georgetown
Univ Wisconsin

Patient Volunteers